Transformation SRF->RRF
Purpose
Transform vector from stationary to rotating reference frame
Library
Control / Transformations
Description
This block transforms a two-dimensional vector \([x_\alpha; x_\beta]\) in the stationary reference frame into a vector \([y_\mathrm{d}; y_\mathrm{q}]\) in a rotating reference frame. The first input is the vector \([x_\alpha; x_\beta]\). The second input is the angle \(\varphi\) between the rotating and the stationary frame. \(\varphi\) is given in radians.
\[\begin{split}\begin{bmatrix}
y_\mathrm{d} \\
y_\mathrm{q}
\end{bmatrix}
=
\begin{bmatrix}
\cos \varphi & \sin \varphi\\
-\sin \varphi & \cos \varphi
\end{bmatrix}
\cdot
\begin{bmatrix}
x_\alpha \\
x_\beta
\end{bmatrix}\end{split}\]