Brushless DC Machine (Simple)

Purpose

Simple model of brushless DC machine excited by permanent magnets

Library

Electrical / Machines

Description

../../_images/bldc_icon.svg

The simplified Brushless DC Machine is a model of a permanent magnet synchronous machine with sinusoidal or trapezoidal back EMF.

The machine operates as a motor or generator; if the mechanical torque has the same sign as the rotational speed, the machine is operating in motor mode, otherwise in generator mode. In the component icon, phase a of the stator winding is marked with a dot.

Electrical System

../../_images/bldcsimple_schema.svg

Fig. 221 Electrical system of a (simple model) brushless DC machine

The back EMF voltages are determined by a shape function \(k_\mathrm{e}\) and the mechanical rotor speed \(\omega_\mathrm{m}\). The shape function is a sinusoidal or an ideal trapezoidal function scaled with the back EMF constant \(K_\mathrm{E}\).

\[e_\mathrm{x}(\theta_\mathrm{e},\omega_\mathrm{m}) = k_{\mathrm{e},x}(\theta_\mathrm{e}) \cdot \omega_\mathrm{m}\]
../../_images/sinusoidal.svg

Fig. 222 Sinusoidal shape function

../../_images/trapezoidal.svg

Fig. 223 Ideal trapezoidal shape function

Electromechanical System

The electromagnetic torque is:

\[T_\mathrm{e} \;= \sum_{x = \mathrm{a,b,c}} k_{\mathrm{e},x}i_x\]

Mechanical System

Mechanical rotor speed:

\[\dot{\omega}_\mathrm{m}\; =\; \frac{1}{J} \left( T_\mathrm{e} - F\omega_\mathrm{m} - T_\mathrm{m} \right)\]

Mechanical and electrical rotor angle:

\[\dot{\theta}_\mathrm{m}\; =\; \omega_\mathrm{m}\]
\[\theta_\mathrm{e}\; =\; p \cdot \theta_\mathrm{m}\]

Parameters

Back EMF shape

Choose between sinusoidal and trapezoidal back EMF.

Back EMF constant

The back EMF constant \(K_\mathrm{E}\) in \((\mathrm{Vs})\).

Stator resistance

The stator resistance \(R\) in ohms \((\Omega)\).

Stator inductance

The stator inductance \(L - M\) in henries \((\mathrm{H})\).

Inertia

Combined rotor and load inertia \(J\) in \((\mathrm{Nms^2})\).

Friction coefficient

Viscous friction \(F\) in \((\mathrm{Nms})\).

Number of pole pairs

Number of pole pairs \(p\).

Initial rotor speed

Initial mechanical speed \(\omega_\mathrm{m,0}\) in radians per second \(\left( \frac{\mathrm{rad}}{\mathrm{s}} \right)\).

Initial rotor angle

Initial mechanical rotor angle \(\theta_\mathrm{m,0}\) in radians.

Initial stator currents

A two-element vector containing the initial stator currents \(i_\mathrm{a,0}\) and \(i_\mathrm{b,0}\) of phase a and b in amperes \((\mathrm{A})\).

Probe Signals

Stator phase currents

The three-phase stator winding currents \(i_\mathrm{a}\), \(i_\mathrm{b}\) and \(i_\mathrm{c}\), in amperes \((\mathrm{A})\). Currents flowing into the machine are considered positive.

Back EMF

The back EMF voltages \(e_\mathrm{a}\), \(e_\mathrm{b}\), \(e_\mathrm{c}\) in volts \((\mathrm{V})\).

Stator flux (dq)

The stator flux linkages \(\Psi_\mathrm{d}\) and \(\Psi_\mathrm{q}\) in the stationary reference frame in \((\mathrm{Vs})\).

Rotational speed

The rotational speed \(\omega_\mathrm{m}\) of the rotor in radians per second \(\left( \frac{\mathrm{rad}}{\mathrm{s}} \right)\).

Rotor position

The mechanical rotor angle \(\theta_\mathrm{m}\) in radians.

Electrical torque

The electrical torque \(T_\mathrm{e}\) of the machine in \((\mathrm{Nm})\).

References

  • D. Hanselman, “Brushless permanent magnet motor design, 2nd ed.”, The Writers’ Collective, Mar. 2003.

  • P. Pillay, R. Krishnan, “Modeling, simulation, and analysis of permanent-magnet motor drives, Part II: The brushless DC motor drive”, IEEE Trans. on Ind. App., Vol. 25, No. 2, Mar./Apr. 1989.

See also

For back EMF shapes other than sinusoidal or trapezoidal, and/or if the stator inductance \(L\) is angle dependent, please use the sophisticated model of the Brushless DC Machine. The sophisticated BLDC machine can be configured as a simple BLDC machine with sinusoidal back EMF if the parameters are converted as follows:

\[K_{\mathrm{c},n} = [0]\]
\[K_{\mathrm{s},n} = [-K_\mathrm{E}]\]
\[L_0-M = L-M\]
\[L_{\mathrm{c},n} = [0]\]
\[L_{\mathrm{s},n} = [0]\]

For machines with sinusoidal back EMF you may also consider to use the Permanent Magnet Synchronous Machine. The parameters can be converted as follows provided that the stator inductance \(L\) is independent of the rotor angle:

\[[L_\mathrm{d} \; \; L_\mathrm{q}] = [L-M \; \; L-M]\]
\[\varphi_\mathrm{m}' = K_\mathrm{E}/p\]