Transformation RRF->3ph
Purpose
Transform vector in rotating reference frame into 3-phase signal
Library
Control / Transformations
Description
This block transforms a two-dimensional vector \([x_\mathrm{d}\; x_\mathrm{q}]\) in a rotating reference frame into a three-phase signal \([y_\mathrm{a}\; y_\mathrm{b}\; y_\mathrm{c}]\). The first input of the block is the vector \([x_\mathrm{d}\; x_\mathrm{q}]\). The second input is the rotation angle \(\varphi\) of the rotating reference frame. \(\varphi\) is given in radians.
\[\begin{split}\left[\!\! \begin{array}{ccc}
y_\mathrm{a} \\ [0.2cm] y_\mathrm{b} \\ [0.2cm] y_\mathrm{c}
\end{array} \!\!\right]
=
\left[\!\! \begin{array}{ccc}
\cos \varphi & -\sin \varphi \\ [0.2cm]
\cos \left(\varphi-120^\circ\right) & -\sin \left(\varphi-120^\circ\right) \\ [0.2cm]
\cos \left(\varphi +120^\circ\right) & -\sin \left(\varphi +120^\circ\right)
\end{array} \!\!\right]
\cdot
\left[\!\! \begin{array}{c}
x_\mathrm{d} \\ [0.2cm] x_\mathrm{q}
\end{array} \!\!\right]\end{split}\]
The resulting three-phase signal does not have any zero-sequence component.